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Using the parallel-flow approximation the prechaotic bifurcation behaviour of 
Blasius boundary-layer flow is studied at  finite Reynolds numbers. The objective of 
this investigation is to search for qualitative solution changes which might be linked 
to the rapid breakdown at transition. As a first step this requires the computation 
of the two-dimensional primary equilibrium surface of nonlinear Tollmien- 
Schlichting waves. This two-dimensional neutral surface exhibits a period-halving 
bifurcation which is qualitatively different from the situation for plane Poiseuille 
flow. At  the same time the numerically computed equilibrium solution offers the 
possibility of assessing the range of convergence of weakly nonlinear results. 

In a second step the stability of this nonlinear equilibrium solution is investigated 
with respect to three-dimensional disturbances. Of particular importance is the 
existence of a modal degeneracy between amplified secondary instability modes, 
implying locally algebraic growth. On decreasing the Reynolds number, the 
amplification rate of this direct resonance point switches from being amplified to 
being damped. Interestingly, the Reynolds number corresponding to this zero- 
amplification point seems to be in the vicinity of the experimentally observed 
transition Reynolds number for Blasius flow. 

1. Introduction 
Many physically interesting and technologically important fluid-mechanical 

phenomena have their origin in the nonlinearity of the governing Navier-Stokes 
equations. For example, the transition from smooth and ordered laminar flow to the 
random and chaotic motion of turbulent flow is such a fundamental nonlinear 
problem which also motivated the present investigation. An up-to-date survey of the 
physical processes during transition and their mathematical modelling together with 
additional references can be found in Morkovin’s (1991) lucid overview. Only fairly 
recent advances in highly nonlinear large-Reynolds-number theory, numerical 
methods, computing facilities and experimental techniques have made it possible to 
shed some light on the highly nonlinear advanced stages of transition. But even so, 
present-day computer resources and algorithms limit our computations to rather 
simple model problems at relatively low Reynolds numbers. Many questions, in 
particular at  supersonic and hypersonic speeds, remain unanswered and are the 
subject of ongoing intensive research. It is hoped that this research effort will not 
only result in a better physical understanding of the transition process, but will also 
provide a more rational practical transition prediction method to supersede the semi- 
empirical techniques currently used in engineering applications. 

The relevant nonlinear theoretical studies may be divided roughly into two 



320 W.  Koch 

categories, namely expansion methods and numerical computations of the full 
NavierStokes equations. Based upon analytical theories the expansion methods rely 
on the assumption of a vanishingly small expansion parameter such as the 
disturbance amplitude or the inverse Reynolds number (see for example the 
monograph by Drazin & Reid (1981) for an introductory survey or Smith’s (1979a, b )  
self-consistent high- Reynolds-number approach. Recently Smith and his colleagues, 
cf. Smith (1991) for a brief survey, have developed the high-Reynolds-number 
approach into a truly nonlinear theory for which the mean-flow profile is completely 
altered from its original form). Naturally, expansion methods also require numerical 
computations, but in general they have to be performed for simpler equations. A 
mathematically more rigorous derivation of weakly nonlinear amplitude equations is 
possible via the locally valid methods of dynumical systems theory (centre-manifold 
theory, normal form theory and local equivariant dynamical systems theory, see for 
example Guckenheimer & Holmes 1983). In these studies degenerate bifurcation 
points are often used to capture, in a local analysis, the global behaviour that is 
observed in full numerical simulations far from this bifurcation point, e.g. Mahalov 
& Leibovich (1991). 

The second category comprises methods which require solution of the full 
NavierStokes equations. At the expense of much higher computational complexity 
the corresponding global solutions have no limitation as far as the expansion 
parameter is concerned, but computer storage and time requirements still prohibit 
application at large Reynolds numbers. Here Smith’s highly nonlinear theory could 
provide a viable alternative. The methods of this second category may be subdivided 
further into direct numerical simulations and numerical bifurcation approaches. 
Direct numerical simulations (see the recent overview by Kleiser & Zang 1991) follow 
the time-accurate evolution of initially prescribed disturbances by solving the initial- 
boundary-value problem. The recently derived parabolic stability equations, cf. 
Bertolotti (1991 a,  b )  or Chang et al. (1991), considerably reduce the computational 
cost of direct numerical simulations by parabolizing the governing equations in the 
streamwise direction for slowly varying flows like boundary layers. The approximate 
results obtained show excellent agreement with full numerical simulations up to the 
highly nonlinear ‘spike ’ stage. Contrary to direct numerical simulation or parabolic 
stability theory the goal of numerical bifurcation theory, the approach to be employed 
in the present investigation, is to locate qualitative solution changes directly and 
trace these changes in the parameter space by solving a boundary-value problem. 

The equilibrium solutions of numerical bifurcation theory are special solutions like 
stationary, time-periodic or a t  most quasi-periodic solutions. Contrary to direct 
numerical simulation, chaotic attracting states cannot be handled yet, limiting our 
bifurcation solutions to prechaotic states. Of particular importance is the stability of 
these equilibrium states. If they are stable, they describe attracting states of the 
solution evolving in time. In  a certain parameter range this is the case for various 
closed-flow problems such as Taylor-Couette or Rayleigh-BBnard flow. Therefore 
most applications of numerical bifurcation theory are found for closed-flow problems, 
a typical example being the work of Cliffe (1988). 

In open flows like Poiseuille flow, Blasius boundary-layer flow or flows past more 
complicated aerodynamic configurations, these equilibrium states are apparently 
unstable in most cases and therefore extremely difficult to trace in experiments or 
direct numerical simulations. Yet, there appears to be a possible connection between 
these unstable equilibrium states and the large-scale coherent structures observed in 
transitional and turbulent flows (cf. Saffman 1983). This adds new importance to 
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these prechaotic equilibrium solutions and one hopes that they will provide clues for 
more rational practical transition criteria in flows controlled by large-scale coherent 
structures (cf. Ehrenstein & Koch 1991). 

Exactly parallel flows such as plane Poiseuille flow admit time-periodic equilibrium 
solutions which have the form of spatially periodic finite-amplitude waves (cf. for 
example Herbert 1977, Barkley 1990, Bridges 1991, or Ehrenstein & Koch 1991). 
These spatially periodic waves allow a considerably simplified numerical treatment 
because one needs to resolve only one wavelength. In external flows like Blasius 
boundary-layer flow, the time-periodic equilibrium solutions are no longer exactly 
periodic in the streamwise direction and additional complications are encountered 
with inflow and outflow boundary conditions, compare Fasel’s (1976) work. In  
particular the proper outflow boundary conditions are still an unresolved question. 

While these difficulties have to be coped with in future bifurcation studies for flows 
past blunt bodies, one usually makes the simplifying parallel-flow assumption for 
flows past streamlined bodies. In this approximation the boundary-layer growth is 
suppressed locally by introducing a fictitious body force in the streamwise direction 
which makes the asymptotic boundary-layer profile an exact solution of the steady 
Navier-Stokes equations. The relevance of this approximation remains to be 
assessed by full non-parallel computations in particular at low Reynolds numbers. 
But for the time being this commonly used artifice allows us to study nonlinear, 
spatially periodic wave-like equilibrium solutions in boundary-layer flows. 
Encouraged by the excellent results obtained with temporal simulations (see Kleiser 
& Zang 1991) we believe that the corresponding bifurcation results are meaningful 
approximations of the non-parallel solution. 

As pointed out by Soibelman & Meiron (1991) in their bifurcation analysis of plane 
Poiseuille flow, a major advantage of the time-dependent numerical approach is the 
availability of high-resolution numerics, enabling it to simulate experimentally 
observed flows, cf. Kleiser & Zang (1991). On the other hand the numerical 
bifurcation approach leads to large systems of nonlinear algebraic equations, the 
efficient numerical treatment of which is still in a rather unsatisfactory state, limiting 
this approach to low-resolution studies. The main advantage of the bifurcation 
approach is the capability of computing unstable solutions of a specified form. Also 
the solution can be varied easily in parameter space. While the generally insufficient 
resolution severely hampers the accuracy of bifurcation solutions, it turns out that 
often few modes are sufficient to give a good qualitative and sometimes even 
quantitative result. 

Therefore the main objective of this investigation is a search for qualitative 
changes in equilibrium solutions which might offer an explanation for the explosive 
character of transition. For this purpose we compute in $2 first the two-dimensional 
neutral surface of finite-amplitude travelling waves in a Blasius boundary layer 
(primary equilibrium surface). Even using the parallel-flow approximation only very 
few high-amplitude results exists, i.e. Milinazzo & Saffman (1985), Lifshits & Shtern 
(1986) or Lifshits, Rakhmatullaev & Shtern (1989), to name the three publications 
known to the author. To a certain extent the travelling-wave calculations of Conlisk, 
Burggraf & Smith (1987) based on the nonlinear triple-deck equations also belong to 
this group. One property distinguishing the two-dimensional neutral surface for 
Blasius flow from the hitherto published results for plane Poiseuille flow is the 
existence of a two-dimensional period-halving bifurcation which has been described so 
far only by Lifshits et al. (1989). (In a private communication F. T. Smith pointed 
out that this bifurcation was anticipated by him (Smith 1988) as a possibility in the 
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form of a nonlinear ‘breakdown ’ which tends to be confirmed by the follow-up work 
of Smith & Khorrami (1991) on an analogous problem). These two-dimensional 
bifurcations occur at fairly high amplitudes making them physically less important 
than the three-dimensional solutions originating a t  the now classical fundamental 
(Klebanoff type) or subharmonic (Craik/Herbert type) secondary instability, cf. 
Herbert (1988). 

The stability computation of the two-dimensional equilibrium solutions with 
respect to these three-dimensional disturbances represents the second step in our 
investigation and is treated in $3. The main difference to Herbert’s (1988) fairly 
exhaustive studies is that we use the ‘exact ’ two-dimensional equilibrium solution 
and do not need to  employ the shape assumption. This allows us to study the 
stability a t  higher amplitudes of the two-dimensional neutral solution also and not 
only near threshold. One particularly noteworthy finding is the existence of a modal 
degeneracy between secondary instability modes. Such a modal coalescence, 
frequently termed a direct resonance, has been studied extensively in linearized 
primary instability problems (see for example Benney & Gustavsson 1981 ; Koch 
1986; Jones 1988; Shanthini 1989, and references cited in these papers). A striking 
difference between the direct resonance for primary instabilities and our secondary 
instability degeneracy is that  the former involve only damped modes while we 
obtained coalescence between amplified modes which already sustain themselves in 
the linear analysis. 

Exact direct resonances occur only a t  discrete points in parameter space and imply 
locally algebraic growth. The corresponding comparatively explosive growth appears 
to provide a possible mechanism to explain theoretically the abrupt changes 
observed during transition. It is interesting to note that in a similar approach, but 
using a prescribed mean turbulent profile instead of our equilibrium solution, Jang, 
Benney & Gran (1986) argue that a direct resonance might be the possible reason for 
the appearance of streamwise vorticities in a turbulent boundary layer. However, 
being aware of the non-uniqueness of the transition process, see Morkovin (1991), 
direct resonance of phase-locked Klebanoff-type fundamental modes can be at most 
one of several mechanisms, particularly since vital ingredients of transition such as 
receptivity are still to  be included. Therefore this study should be considered only as 
an attempt to  shed more light on the nonlinear bifurcation structure of boundary- 
layer flows. To clarify the implications of the modal degeneracy on the transition 
process certainly requires further more penetrating studies. Also one needs to 
investigate to what extent non-parallelity of the flow alters these finite-Reynolds 
number results, cf. Smith ( 1 9 7 9 ~ ) .  

2. Two-dimensional neutral surface solution 
2.1. Governing equations 

We consider the flow of an incompressible viscous fluid of constant kinematic 
viscosity v* past a semi-infinite flat plate located at 

y * = o ,  o < x * ,  --oo < z * <  +m. 

All quantities are non-dimensionalized with the laminar free-stream velocity LJZ and 
the self-similarity reference length L* = (v*x*/Uz)i. Then x = (2, y, z )  = x*/L* is the 
non-dimensional Cartesian coordinate vector with components in the streamwise, 
normal and spanwise direction, and v = (u, v, w) = v*/Uz  denotes the corresponding 
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dimensionless velocity vector. If only two-dimensional disturbances are considered, 
a stream function @(x, y) can be introduced : 

u = a$/ay, = -a$/ax, ( 1 )  

such that the governing equations of motion can be written 

Here Re = (x*Uz/v*)i  is the Reynolds number and F denotes a body force which will 
be chosen such as to make the quasi-parallel boundary-layer profile an exact solution 
of the NavierStokes equations. On the flat plate the no-slip boundary condition has 
to be satisfied and at infinity proper decay conditions have to be imposed. 

For the following two-dimensional analysis we may split the solution into two 
parts 

where Y ( x ,  y) denotes a steady laminar solution of (2) while $(x ,  y, t )  contains the 
fluctuating part. eZD is a conveniently chosen amplitude of arbitrary size. Avoiding 
the difficult (numerical) computation of the exact two-dimensional laminar flow 
Y ( x ,  y) we fix L* (and hence Re) and select the local quasi-parallel Blasius boundary- 
layer flow U(x,  y) =f’(y), V ( x ,  y) = 0 as our basic laminar flow. The function f(y) is 
the solution of the Blasius equation 

$(.7 y7 t ,  = p(x,  +“2D $(., y, t ) ,  (3) 

2f ‘I1 +ff” = 0, (4) 

with f(0) =f’(O) = 0 and f’(m) = 1. Naturally the Blasius solution is not an exact 
solution of the Navier-Stokes equations. But substituting the Blasius solution into 
the equations of motion, the leftover terms can be eliminated formally by choosing 
the artificial force term F appropriately. The physical relevance of this ad hoc 
procedure still has to be ascertained by an exact non-parallel computation in the 
spirit of Fasel’s (1976) work. At present however the parallel-flow assumption leads 
to a considerable reduction in the numerical computation and seems to be adequate 
for our purposes. 

Fixing L* does not necessarily mean that the free-stream mean velocity of the 
time-dependent nonlinear solution remains equal to U z .  This subtle point has also 
been of major concern in other investigations, cf. Likhachev & Shtern (1975), Smith 
(1979b), Milinazzo & Saffman (1985) or Fischer (1990). A related question in plane 
Poiseuille flow is the unique determination of the nonlinear solution by imposing the 
constant-flux or constant-pressure-gradient condition, see for example Stuart (1960) 
or Milinazzo & Saffman (1985). To clarify a frequent misunderstanding we 
emphasize the fact that the time-dependent nonlinear equilibrium solution computed 
by imposing the constant-pressure-gradient condition is physically different from the 
constant-flux solution generally realized in plane Poiseuille flow experiments. This 
does not imply a violation of global balances because these nonlinear equilibrium 
solutions have been computed under different physical restrictions in parameter 
space ; but these solutions can be related to each other. Only for steady laminar flow 
do the two solutions coincide. 

In the following we concentrate on wave-like solutions which are rather special 
time-periodic solutions, being nonlinear extensions of the classical linear Tollmien- 
Schlichting waves. In a frame of reference x’ = x-Ct moving with the (unknown) 
wave speed C the nonlinear solution is stationary @/at = 0) and periodic in the 
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streamwise direction. Writing from now on x instead of x’, 3 may be expressed 
as a Fourier series in the streamwise direction 

yi th  a bcing the streamwise wavenumber. Reality of the solution requires 
$-,, (y) = $,, (y), where the bar denotes the complex conjugate. As a consequence we 
need to solve only for n 2 0. Substituting (5) into (2) and equating equal exponentials 
we obtain the modal equations for n 2 0 

with the convolution term 

For n = 0 the relevant equation may be integrated once with respect to  y. As 
demonstrated by Herbert (1977) the corresponding constant of integration implies a 
change of the mean pressure graflient in the streamwise direction pnd is therefore 
equal to zero in our formulation. $o appears only as derivative, i.e. d$,/dy = Go, such 
that the modal equations (6) can be rewritten 

1 d2Go 
Re dy2 

n = O :  -- 

n > 0:  

Here Z“ denotes the sum in (6) without the No,n and N n , o  terms. 
The no-slip boundary conditions on the plate are simply 

n = 0:  Go (y = 0) = 0, 

$n (y = 0) = d~., /dy(y = 0) = 0. n > 0:  

At infinity we require all disturbances to  decay, with the exception of Go which 
remains finite as y+  00 (compare Likhachev & Shtern 1975). Based upon the more 
general expansion procedure of Eckhaus (1965), which contrary to the classical 
Stuart (1960) approach does not separate a priori time and wall-normal coordinate 
in the expansion coefficients, Fischer (1990) was able to  show that in the limit 
as t +  co the weakly nonlinear solution requires a finite mean flow deformation 
Go( m) =# 0 a t  infinity. (This is a consequence of the parallel-flow assumption. If non- 
parallel flow effects are included, as in Smith (19793), the mean flow deformation Go 
decays a t  infinity.) Fischer (1990) therefore suggested using the Neumann condition 

dzio/dy+O as y+00 (12) 

which will be also employed in this investigation. This is analogous to plane 
Poiseuille flow, where the constant-pressure-gradient solution of the nonlinear 
periodic state results in a mean velocity at midchannel which differs from that of 
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laminar flow but has a vanishing derivative at midchannel. Finally, to fix the phase 
and the amplitude eZD a local normalization condition will be imposed as defined in 

2.2. Numerical solution procedure 

To solve the modal equations (8) and (9) numerically we convert them into algebraic 
form via Chebychev collocation. For this purpose we map the semi-infinite domain 
y E [ O , o o )  into T,I E [ 1 , O )  by means of the exponential transformation 

(21). 

7 = exP(-Y/Yo), Y = Yoln7. (13) 
While Boyd (1989) makes some cautioning remarks, Spalart (1984) and Laurien & 
Kleiser (1989) have used this transformation with obvious success if yo is chosen large 
enough. Selecting yo = 15 we truncate the modal expansion (5) at n = N ,  where 
N < 6 in our computations. 

As demonstrated by Herbert (1977) and Ehrenstein & Koch (1991) the modal 
equations (8) and (9) possess certain symmetry properties in the 7-plane (assuming 
a symmetric continuation of the Blasius profile for - 1 < 7 < 0 and that the 
collocation points have been chosen symmetrically about = 0). Of particular 
importance is the symmetric solution 

Zit)(-r) = Z i t ’ ( + q ) ,  &p( -7 )  = ( -1)n+1@(+7),  (14) 
which reduces to the linearly unstable symmetric mode $,(7) for eZD = 0. Extending 
this symmetric solution to eZD > 0, 4, (7) as well as each Fourier mode 

&n(q), 1 d n d N  

(denoted collectively by &7)) is expanded in terms of the relevant even or odd 
Chebsyshev polynomials in the half-domain 0 < 7 < 1 

Tk(7) = co?(kcos-’q) is the kth-order Chebyshev polynomial and the modal values 
of Zio and $n at the K collocation points 

vj = cos [ j 7 ~ / ( 2 K -  l)], j = 0, ..., K -  1,  
are denoted by 

Zioi = ao(7j) = G o ( Y j ) ;  & m i =  &n(Vj)  = &n (yj), 1 < n < N ,  0 <j < K - 1 .  (17) 

The pth derivative in the transformed 7-plane can be computed by the matrix 
collocation method (cf. Gottlieb, Hussaini & Orszag 1984), 

k-0 

Depending upon the symmetry of &7), Djk is either the symmetric or antisymmetric 
derivative matrix 

0:;) = Djk + Dj, 2 ~ - 1 - k ,  fijg) = Djk- Dj, 2 ~ - 1 - k ,  0 < j < K -  1, (19) 
where Djk, with Djkp) = (Djk)p, is the derivative matrix in the full domain, 

given by Gottlieb et al. (1984). In the physical y-plane 

- 1 d 7 d  + 1 ,  
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with ijjk =. fi jk.m(yj)  where m = aq/ay denotes the metric of the transformation. 
Higher derivatives are obtained by applying the chain rule. 

Observing the symmetry of each mode, cf. (14), the boundary conditions at  infinity 
are fulfilled automatically. To satisfy the boundary conditions on the plate we follow 
a method of Ehrenstein (1988) : instead of simply replacing suitable rows in the 
discretization matrix as suggested by Gottlieb et al. (1984), this method has the 
advantage that spurious (unstable) modes are eliminated by splitting the fourth- 
order differential operator into two second-order operators. 

The local normalization condition 

Gn (Ynorm) (Ynorm) = 1 (21) 

fixes the phase and amplitude of the solution. In general we choose n = 1 and ynorm 
as the tenth collocation point for K = 30. This places ynorm in the vicinity of the 
laminar boundary-layer displacement thickness S, = 1.720787 (cf. figure 8). If the 
first mode is not excited we select n = 2. 

Substituting (17) and (20) into the normalization condition (21) as well as into the 
modal equations (8) and (9) (with due consideration of Ehrenstein’s 1988 treatment 
of the boundary conditions), and satisfying them at each internal collocation point 
we obtain a large system of nonlinear algebraic equations of the form 

F(u;Re,a)  = 0. (22) 

Here u denotes the solution vector 

~ ~ { ~ ~ ~ ; R e ( ~ ~ ~ ) , I m ( ~ ~ , ) ; c , € * ~ } ,  O <  n G N ,  1 G j G K - 1 ,  (23) 

containing the unknown modal values at the K - 1  interior collocation points 
together with the unknown wave speed C and amplitude egD. (Re ,a)  is the two- 
dimensional parameter vector and Re ( z )  or Im ( 2 )  denote the real or imaginary part 
of z. I n  actual computations one parameter, the so-called control parameter p ,  is fixed 
while the other is the varying bifurcation parameter A. Choosing h = a we obtain 
Re = constant cuts through the equilibrium surface, while a = constant cuts are 
computed if h = Re. 

Individual nonlinear solution branches in cut planes are calculated by pseudo- 
arclength continuation (cf. Keller 1977). For this purpose a pseudo-arclength 
parameter s is defined by the parameterizing equation 

Keller (1977) introduced the tuning factor 0 < 6 c 1 to place a different emphasis on 
the solution vector u or the branching parameter h in order to obtain fairly evenly 
spaced points along the solution branch. Starting with a known solution a t  s = so, 
which in our case is either a solution on the linear neutral surface or a previously 
computed nonlinear solution, an initial approximation to the new solution a t  s can 
be obtained via the tangent predictor 

(25) 
all 

u(s) = u ( s o ) + - ( s o )  [s-so]. as 
This approximate solution is then corrected by Newton-Raphson iteration of the 
extended system 

F(u, h ; p )  = 0, N(u, A,  s) = 0, (26) 
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which converges rapidly for a suitably chosen step size (s-so). The extended system 
above introduced has the advantage that its Jacobian matrix is non-singular a t  limit 
points and therefore overcomes the failure of simple parameter continuation in h a t  
such points. Furthermore, simple bifurcation points can be detected by monitoring 
the sign of the Jacobian determinant and branch switching methods can be applied. 
The tangent au/as(so) can be found as a simple by-product of the Newton-Raphson 
iteration. 

2.3. Physical quantities of interest 
Both, mean-flow quantities and fluctuating quantities characterize the nonlinear 
state. The most obvious mean-flow quantity is the mean-velocity profile 

(Y)  = f ’ (Y)  +“2D GO (Y). 
As elaborated before, in our constant-pressure-gradient formulation the mean free- 
stream velocity of the time-dependent nonlinear equilibrium solution differs from the 
steady free-stream velocity f’( co) = 1 .  For comparison with experimental results i t  
is therefore reasonable to define a new Reynolds number Re,  with the new free- 
stream velocity U,(CO) = 1 + E ~ ~ Z ~ ~ ( C O ) ,  i.e. 

( 2 7 )  

As a consequence of Qo(co) < 0 we have Re, < Re and for steady laminar flow (with 
e2D = 0 )  Re,,, = Re. I n  engineering applications one uses in general 

Re, = ( z * u z (  co) /v*) i  = Re [l + e2D Go( co)];. 

Re, = x*uz (  co)/v* = Re:. (28)  
A further mean-flow quantity of considerable technical importance is the local 

skin-friction factor 

7$,11 = ,u*(auz/ay*)y.-o denotes the wall shear stress and p* is the density. Using our 
non-dimensionalized quantities we find 

For the steady Blasius boundary layer with Re = Re, this reduces to the well-known 
result 

With the prescribed normalization ( 2 1 )  the amplitude B~~ provides a scalar 
measure of the nonlinear fluctuations. In  theoretical investigations however, instead 
of eZD one generally uses the totalJluctuation energy E per unit length normalized with 
;u:2 L* : 

with 6, = (G,,B,), Zi, = d$Jdy, 8, = -ina$n. Here S,, denotes Kronecker’s delta 
and a barred quantity is the complex conjugate. In experimental investigations 
usually r.m.s. values are measured, for example the streamwise velocity fluctuation 
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t a  

FIGURE 1. Perspective view of three-dimensional linear neutral surface with several temporal 
amplification curves Im ( w )  = constant (-.-) a t  the bounding cuts. 

2.4.  Two-dimensional equilibrium solution 

I n  order to investigate secondary instabilities we may either employ the shape 
assumption, cf. Herbert (1988), or compute the exact nonlinear primary equilibrium 
surface. The shape assumption is a valid approximation near the threshold of 
secondary instabilities. In  our investigation, however, we are also interested in the 
bifurcation behaviour a t  higher amplitudes. Therefore we need to  compute first the 
nonlinear primary equilibrium surface. This will be done in the following section. 

The starting point of our nonlinear computation is the linear neutral surface 
depicted in figure 1 for three-dimensional linear waves ( p  being the spanwise 
wavenumber). This linear neutral surface describes the location of Hopf bifurcations 
from the basic laminar state in the parameter space (Re, a, p )  and is the result of 
linear classical hydrodynamic stability theory (cf. Drazin & Reid 1981). Inside the 
neutral surface the flow is linearly unstable, while outside the surface the flow is 
linearly stable. Several temporal amplification curves Im ( w )  = constant have been 
inserted for the cuts /3 = 0 and Re = 3000 in figure 1. The temporal eigenvalue 
spectrum consists of a finite number of discrete eigenvalues (one of which becomes 
unstable on the above neutral surface) as well as of a continuous contribution. 
The critical Reynolds number is reached for two-dimensional disturbances at 
Recrit = 301.64 with aCrit = 0.176, Ccrit = 0.39664 and hence wCrit = acrit Ccrit = 0.0710 
(cf. Drazin & Reid 1981). Consequently the two-dimensional nonlinear equilibrium 
surface is of greatest interest and we shall limit ourselves in the following to two- 
dimensional primary disturbances, i.e. p = 0. On the neutral surface a and w are both 
real and there is no distinction between temporal and spatial modes. 

A basic question concerns the truncation error of our numerical solution. 
Truncation influences the quantitative and even qualitative behaviour of the 
primary neutral surface as well as the secondary instability of $3.  As we shall see 
from a comparison with weakly nonlinear results in $ 2.5 the historically important 
mean-field solution with N = 1 is even qualitatively incorrect. At higher values of a 
truncation a t  N = 3 gives fairly accurate results for the primary equilibrium surface 
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FIGURE 2. Influence of Chebyshev truncation K on the accuracy of fluctuation 
energy E(a)  for Re = 500, N = 1. 

0.06 7 

a 
FIQURE 3. Influence of Fourier truncation N on the accuracy of fluctuation 

energy E(a)  for Re = 500, K = 30. 

as well as for the secondary instability computation of 93. It appears fortunate that 
this high-u part of the neutral surface is also of most importance for our direct 
resonance analysis, because at low 01 many more modes need to be retained for 
quantitatively accurate results. To demonstrate the influence of truncation on the 
primary equilibrium solution we vary the number of Chebyshev polynomials as well 
as the number of streamwise Fourier modes. After computing the neutral surface for 
N =  1 and 2 for reference and comparison with the corresponding plane Poiseuille 
flow results we investigate a single solution in greater detail for the high truncation 
N = 6 .  

For our truncation test we have chosen the example with fixed Reynolds number 
Re = 500. Keeping at first only one Fourier mode, i.e. N = 1, we vary the number of 
retained Chebyshev polynomials K .  Figure 2 demonstrates that for small K the 
largest deviations occur near the linear neutral curve and that K should be chosen 
larger than 20. Therefore we fix K = 30 in all following computations and vary the 
number N of retained Fourier modes in figure 3. We notice that even for N = 6 the 
solution has not fully converged quantitatively, but N = 3 gives already fairly 
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t a3000 

FIQURE 4. Perspective view of two-dimensional neutral fluctuation-energy 
surface E(Re, a) for K = 30, N = 1.  

accurate results a t  this Reynolds number. In  the following we shall compute several 
cuts through the neutral surface and study the influence of Fourier truncation N as 
the Reynolds number Re or streamwise wavenumber a is varied. 

First we fix N = 1 (frequently termed the mean-field approximation because it 
only takes into account the interaction between the mean flow and the first 
harmonic) and use Re as control parameter. A perspective view of the neutral surface 
E(a,Re) with N = 1 is shown in figure 4. With the exception of the supercritical 
behaviour near the critical Reynolds number the solution is qualitatively similar to 
that €or plane Poiseuille flow, cf. Herbert (1977) or Ehrenstein & Koch (1989). (Here 
we term a solution supercritical in the vicinity of a neutral curve if nonlinear 
equilibria exist in the linearly unstable parameter domain. Consequently a subcritical 
solution exists in the linearly stable parameter domain only above a certain 
threshold amplitude.) Using max IuI and the frequency parameter F = aC/Re instead 
of a, Lifshits & Shtern (1986) have already published the N =  1 neutral surface. 
Owing to their different boundary condition for the mean-flow velocity a t  infinity we 
have not performed a quantitative comparison with their results, but the qualitative 
agreement is apparent. We observe from figure 4 that the N = 1 solution is subcritical 
(with a finite-amplitude threshold) on the upper a-branch in agreement with the 
results of weakly nonlinear theory. On the lower a-branch however the N =  1 
solution disagrees with the supercriticality prediction of weakly nonlinear theory 
(compare 82.5). From figure 3 we see that this is due to the severe truncation a t  
N = 1 and we therefore increase our truncation to N = 2.  

The corresponding neutral surface is depicted in figure 5 by the solid curves. The 
N = 2 solution is now in qualitative agreement with the weakly nonlinear prediction 
a t  the lower a-branch. We note that contrary to the N = 1 solution of figure 4, the 
N = 2 solution of figure 5 is slightly subcritical with respect to the critical Reynolds 
number, i.e. we have a finite-amplitude solution at Re = 300 while Recrit = 301.64. 
Deviating from the situation encountered in plane Poiseuille flow (cf. Herbert 1977 
or Ehrenstein & Koch 1989), a new phenomenon complicates the picture, which so 
far has been observed only by Lifshits et al. (1989). Namely, aside from the N = 2 
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FIGURE 5. Perspective view of two-dimensional neutral fluctuation-energy surface 
E(Re, a) for K = 30, N = 2. 

branch, shown in figure 3 for Re = 500, there exists another N = 2 branch which is 
isolated and originates on the superharmonic neutral surface. (In analogy to a 
period-doubling subharmonic bifurcation with wavenumber aln,  n = 2, we term a 
branch (or bifurcation) superharmonic in the streamwise direction if on the 
bifurcating branch only streamwise harmonics ncx, n = 2 of the original branch with 
cx are excited). 

If we increase Re beyond 500 the isolated N = 2 branch links up with the N = 2 
high-a branch and as a consequence the lower branch of the neutral surface can be 
continued to the upper branch only by including part of the superharmonic neutral 
surface, for example the section between points A and B for Re = 1000 in figure 5.  
Figure 6 ( a )  shows this situation in greater detail for the N = 2 solution at Re = 580. 
For N = 3 as well as higher truncations we again obtain an isolated finite-amplitude 
branch at low a. Truncation obviously can change the qualitative behaviour of the 
solution at lower values of a and we should therefore be very cautious in our 
interpretation. The isolated N = 4 solution (not shown in figure 6 a )  displays an 
intricate, even more interlooped behaviour and required rather lengthy com- 
putations. It is obvious that the isolated N = 4 solution has not converged yet and 
many more modes should be retained which would exhaust our computational 
resources. Similar remarks apply to the low-a branch a t  higher Reynolds numbers 
where even higher truncations lead to a link up of the high-a branch with the 
superharmonic solution similar to the N = 2 solution of figure 6 ( a ) .  However, as we 
shall see later, the highest local skin friction factor is reached on the high-a portion 
of the neutral surface where fairly good convergence has already been attained for 
N = 3. Therefore our secondary instability calculations of 53 with N = 3 will be still 
useful if we exclude the low-a part of the two-dimensional equilibrium solution. 
Figure 6 ( b )  displays the corresponding variation of the wave speed C between the 
linear low- and high-a neutral branch at Re = 580 for N = 1, 2 and 6. The points 
where the lower and upper N = 2 branches end on the superharmonic neutral surface 
arc marked by crosses in figures 5 and 6. The end points of the isolated N = 3 solution 
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FIGURE 6. (a) Influence of Fourier truncation N on the neutral fluctuation-energy surface E(a)  for 
Re = 580 with n = 1, ..., 6 .  Inserted modal patterns indicate excited modes (0 )  and non-excited 
modes ( x ). The square symbol marks Wagner’s equilibrium solution obtained by time-dependent 
simulation for a = 0.2 with N = 5.  ( h )  Corresponding wave speed C(a) for Re = 580 with N = 1, 2 
and 6. 

in figure 6 ( a )  are marked by triangles and differ considerably from the crosses of the 
N = 2 solution, a sign of insufficient resolution. These points are interesting examples 
of a superharmonic 2 :  1 resonance at  finite amplitude. 

Taking a as control parameter and varying the Reynolds number we obtain the 
results depicted in figure 7 .  Finitc-amplitude N = 2 resonance points are again 
marked by crosses. The corresponding superharmonic branches (computed with 
N = 1 and shown as dashed curves) allow a comparison with the N = 2 solutions at  
the same wavenumber a. Obviously more Fourier modes should be retained for 
quantitatively accurate results. Aside from a factor 2, which might be due to a 
different definition of E ,  the results of Milinazzo & Saffman (1985) for a = 0.17 lie 
slightly below our N = 2 results. Instead of our Fourier series (5) Milinazzo & 
Saffman (1985) used a pseudospectral approximation in x and hence their N has a 
different meaning. But not even with our lowest truncation N = 1 did we encounter 
a spurious bendback as shown in their figure 5 for (their) N = 7 truncation. However 
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FIGURE 7 .  Various a = constant cuts through neutral fluctuation-energy surface E(Re, a) for 
K = 30, N = 2. Also shown are two cuts for K = 30, N = 1 (---). 
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FIGURE 8. Mean-flow distortion 4, (y) and fundamental mode &, (y) on the large-amplitude branch 
at Re = 580, a = 0.2, C = 0.3842 with K = 30 and N = 6 compared with the linear eigenfunction 
(symbols). Local normalization point is marked by the horizontal arrow. 

actual bendbacks are possible as exemplified by the solid line a = 0.12 cut in figure 
7. It is amazing that the possibility of such a bendback had already been predicted 
by Likhachev & Shtern (1975) based solely on their weakly nonlinear solution. 

An independent check of the nonlinear primary equilibrium solution for Re = 580, 
a = 0.2 has been made by M. Wagner at  our Institute. Using a modified version of the 
time-evolution code of Laurien & Kleiser (1989), he obtained the two-dimensional 
attracting end state E = 0.04689 with N = 5 shown by the square symbol in figure 
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FIGURE 9. Mean-flow velocity u, (y) = y ( y ) + ~ ~ ~ G ~  (y) on the large-amplitude branch at Re = 580, 
a = 0.2, C = 0.3842 with K = 30 and N = 6. Also shown is the corresponding Blasius profile f’(y) 
non-dimensionalized with U z  (-.-) and uz (co) (--). 

6 ( a ) .  Apparently the upper branch of Blasius boundary-layer flow is stable with 
respect to two-dimensional disturbances a t  the above parameters, similar to  plane 
Poiseuille flow (cf. Pugh & Saffman 1988), and the time-periodic end state is 
reasonably close to  our equilibrium value E = 0.048 14 for N = 5. The slight 
difference might be due to  the different formulation of the mean flow boundary 
condition a t  infinity : Laurien & Kleiser (1989) use the Dirichlet boundary condition 
6, (a) --f 0 while we impose the Neumann boundary condition d$,/dy( 00) --f 0. 

To get a better picture of the two-dimensional equilibrium solution a t  higher 
amplitudes we investigated the example Re = 580, CL. = 0.2 (with N = 6, K = 30, 
Re, = 514.33, eZD = 0.02367, C = 0.3842, E = 0.04801, c(f = 0.001 852) in more detail. 
Figure 8 shows the mean flow deformation S,(y) and the fundamental mode &,(y) as 
a function of normal distance from the plate. W? see that the finite free-stream value 
$,(co) = -9.025 is reached much faster than $ 1 ( ~ )  = 0. The normalization point, 
where = -ialCrl = 1, is marked by the horizontal arrow. Using the same 
normalization, the symbols depicted represent the corresponding linear eigenfunction 
at the collocation points, giving some clues about the validity of the frequently used 
shape assumption a t  higher amplitudes. The mean-flow profile u, (y) of the nonlinear 
equilibrium solution is plotted in figure 9 together with the Blasius profiles non- 
dimensionalized with the original as well as the nonlinearly deformed free-stream 
velocity. We observe that, with reference to the nonlinearly deformed free-stream 
velocity, u, (y) is somehow intermediate between a laminar and a turbulent mean- 
flow profile. With our constant-pressure-gradient formulation urn (y) starts with the 
wall shear stress of the original laminar flow, but ends with the different free-stream 
velocity 1 + eZD Go( 00). I n  the experimentally realized flow the mean-flow profile 
would end with the free-stream velocity U ,  but would start with a different wall 
shear stress. 
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FIGURE 10. Local skin friction factor c; as a function of Reynolds number Re,. Shaded area shows 
the projection of the N = 1 equilibrium surface. Dashed curve indicates projection of N = 2 
equilibrium surface. Also included are the local skin friction measurements of Dhewan (1953) 
together with the laminar law of Blesius and the turbulent law of Prandtl (0, direct skin friction 
measurements at r* = 28.6 cm; A, laminar and turbulent (tripped) direct skin friction 
measurements at z* = 56 cm ; x , transitional direct skin friction measurements for Mach numbers 
M - 0.24 to 0.6). The star marks the location (ci, Re,,,) of our high-amplitude example for Re = 580, 
a = 0.2 with N = 6. 

For engineering applications the skin-friction factor is of major importance. The 
projection of the local skin friction factor surface c;(Re,, a) is shown in figure 10 for 
N = 1 (shaded area) and N = 2, together with Blasius’ law c;, = 0.664/Rem for 
laminar flow and Prandtl’s law cjtu,, = 0.057 6Reizl5 for turbulent how (cf. Schlichting 
1958). The projection of theN = 2 neutral surface shows slightly subcritial behaviour 
with respect to Re, (see also figure 5) but otherwise deviates only slightly from the 
projection of the N = 1 surface. This situation is similar to that encountered for plane 
Poiseuille flow, cf. Ehrenstein & Koch (1991), and we assume that the projection of 
the N = 2 neutral surface already gives us a fairly good picture of the projected true 
surface. This is because the maximal friction factor is almost always located on the 
high-a branch where good convergence is achieved. The location of maximal friction 
factor however does not coincide with the location of the maximal fluctuation 
energy. For comparison the local skin friction measurements of Dhawan (1953) for 
laminar, turbulent (tripped by a roughness element at the leading edge) and 
transitional flow on a flat plate are also included. Apparently, in Dhawan’s (1953) 
experiment the transition is quite abrupt and as expected has no relation to the two- 
dimensional nonlinear equilibrium solution above computed. Transition is a three- 
dimensional phenomenon and to a certain extent the above two-dimensional 
equilibrium surface is a mathematical artifice which led to frequent misun- 
derstandings. The saturated high-amplitude equilibrium state is practically never 
reached in an open-flow system because higher amplified three-dimensional 
secondary instabilities take over a t  much lower threshold amplitudes, cf. Herbert 
(1988) or Lifshits et al. (1989). Yet, the primary equilibrium surface is needed for the 
accurate computation of secondary instabilities unless one uses the approximate 
shape assumption employed by Herbert (1988). 
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FIGURE 11. Comparison with weakly nonlinear results of Fischer (1990) (0) at Re = 310 with 
K = 30 and N = 1 ,  ..., 6. (a) Fluctuation-energy surface E(a) ,  (b) maximum r.m.s. value of 
streamwise velocity fluctuation maxOCy<m u,,, (a). 

2.5. Comparison with weakly nonlinear results 
The above numerical results give us a welcome chance to assess the range of 
convergence of weakly nonlinear computations for Blasius flow. Weakly nonlinear 
amplitude expansions describe the behaviour of the nonlinear solution in the 
neighbourhood of the linear neutral surface. Despite differing formulations of the 
various weakly nonlinear theories for Blasius boundary-layer flow (cf. Itoh 1974 ; 
Likhachev & Shtern 1975; Herbert 1975; Smith 1979b; Sen & Vashist 1989; or 
Fischer 1990, just to cite a few) the general results are very similar : roughly speaking 
the solution on the low-a branch is supercritical (Likhachev & Shtern 1975 call it soft 
excitation) and on the high-a branch it is subcritical (hard excitation). We are 
especially grateful to Dr T. Fischer at our Institute for providing the relevant weakly 
nonlinear equilibrium results, which were computed for the same boundary 
conditions a t  infinity as ours, cf. Fischer (1990). A more detailed comparison, in 
particular of the mean flow distortion Go (y) can be found in Fischer (1992). 

With Re = 310 our Re = constant cut chosen for comparison is near the critical 
Reynolds number. Figure 11 shows the corresponding results for the fluctuation 
energy E (figure l l a ) ,  as well as the maximum streamwise r.m.s. fluctuation 
maxo,<y<m u,,, (y) (figure 11 b ) .  We note that even at this very low Reynolds number 
at least N = 3 modes have to be retained in our Fourier expansion to obtain 
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quantitatively correct results. The higher the Reynolds number the more modes are 
needed (compare also Conlisk et al. 1987). The symbols in figure 11 denote Fischer’s 
weakly nonlinear results near the low- and high-a branch neutral curve, where 
excellent agreement is found. With increasing amplitudes the deviations increase as 
expected. Qualitatively the numerical results also agree with Herbert’s (1975) 
weakly nonlinear computation. All together, this comparison not only allows us to  
assess the range of applicability of weakly nonlinear theory for Blasius flow, but also 
provides a valuable check on our numerical computation. 

2.6. Connections to high-Reynolds-number theory 
Although outside the main scope of this investigation a very stimulating discussion 
with F. T. Smith induced us to point out interesting connections between our finite- 
Reynolds-number results and the high-Reynolds-number solutions of F. T. Smith 
and his colleagues. High-Reynolds-number theory provides a rational expansion 
procedure valid in the limit as Re + co and allows a consistent inclusion of non- 
parallel effects. Strictly valid only for asymptotically large Reynolds numbers i t  
appears to  lead to qualitatively and often quantitatively reliable conclusions even for 
finite Reynolds numbers. Near the lower-wavenumber branch of the neutral curve 
the weakly nonlinear triple-deck analysis of Smith (1979 b)  shows that nonlinearity 
is supercritically stabilizing with a (locally) stable limit-cycle solution. The upper 
branch is subcritically unstable according to Gajjar & Smith (1985) in agreement 
with our numerical findings, see for example figure 5. Proceeding to higher 
amplitudes Smith & Burggraf (1985) analysed the development of high-frequency 
disturbances and were led, inter alia, to the Benjamin-Ono equation governing the 
displacement at high frequencies. This equation allows stable periodic or solitary 
nonlinear travelling-wave solutions which could possibly be related to our numerical 
high-amplitude results. I n  their schematic diagram of the amplitude-dependent 
neutral curve for asymptotically large Reynolds numbers Smith & Burggraf (1985) 
or Smith, Doorly & Rothmayer (1990) conjectured a high slope along the lower- 
wavenumber branch and a low slope with a pronounced bulge on the upper branch 
which closely resembles our N =  1 results of figure 4. The frequency-doubling 
bifurcation for higher truncations, cf. figure 5, changes this picture drastically unless 
the solution breakdown of Smith (1988) can be related to  this bifurcation. Perhaps 
this could offer a theoretical explanation for the highly oscillatory behaviour of our 
numerical solution for low wavenumbers. But, as mentioned before, three- 
dimensional secondary bifurcations are physically more significant and therefore 
extensions of the high-Reynolds-number theory to include three-dimensionality are 
extremely important. In  this context it is perhaps worth pointing out that  often two- 
dimensional nonlinear theory is found to apply also to three-dimensional solutions in 
a locally quasi-two-dimensional manner. 

3. Three-dimensional secondary instability 
The recognition that the rapid growth of three-dimensional disturbances in 

transitional boundary-layer flow is due to  a linear secondary instability of the two- 
dimensional finite-amplitude Tollmien-Schlichting waves constituted an important 
breakthrough in transition research. Floquet theory provides the theoretical tool for 
classifying and computing the various parametric instabilities as outlined very 
clearly in Herbert’s (1988) review. Yet, similar to primary stability theory, i t  is not 
possible to predict transition with secondary stability theory, unless it is 
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supplemented, usually by empirical information. As Morkovin (1991) formulated it, 
some additional spontaneous change may yet be needed to  explain the rather abrupt 
changes at  transition. 

In this section we investigate three-dimensional secondary disturbances of the 
periodic two-dimensional equilibrium solution computed in $2. Concentrating on so- 
called fundamental parametric resonances corresponding to phase-locked Klebanoff- 
type secondary instabilities, cf. Herbert (1988), we identify a modal degeneracy 
between amplified modes. The associated algebraic growth induced us to speculate 
whether this direct resonance is possibly one of the spontaneous changes conjectured 
by Morkovin ( 199 1 ) . 

3.1. Governing equations 
In  a frame of reference moving with the velocity C of the two-dimensional nonlinear 
equilibrium solution we split the dimensionless velocity vector u = (u, v, w) as well as 
the vorticity vector o = (&y,  5) = V x u in the usual way into a streamwise-periodic 
steady base flow plus a time-dependent disturbance : 

Here the bracketed term represents the two-dimensional equilibrium flow computed 
in $2 with i and k being unit vectors in the x- and z-directions. E denotes the (small) 
amplitude of the three-dimensional disturbances v", 63. There is no need for the shape 
assumption employed by Herbert ( 1988), but the parallel-flow approximation is still 
limiting our approach. 

Substituting the definitions (34) into the equations of motion and linearizing for 
E Q 1 we obtain the linear secondary-instability equations in the normal velocity 
(v") - normal vorticity ( i j )  formulation (see Benney & Gustavsson 1981 or Ehrenstein 
& Koch 1989): 

{;+(.-C)---V2 q+--  dU a5 
ax a Re } d y a z  

The corresponding solution is subject to the no-slip boundary conditions on the plate 
v" (y = 0) = av"/ay(y = 0) = q(y = 0) = 0 and vanishingly small disturbances a t  
y = CO. The continuity equation V-fi = 0 together with the definition of vorticity 
6 = V x v" complete the system of governing equations. 

The coefficients of these equations depend on the two-dimensional equilibrium flow 
and therefore are periodic in the streamwise direction x with period A, = 2rc/a; but 
they are independent of z and t .  Therefore, using the normal-mode concept in z and 
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t and applying Floquet theory, we may write for the solution in the moving frame, 
cf. Herbert (1  988) 

with 0 < y < a. In our temporal approach a is a complex quantity with Re (v) giving 
the temporal growth rate and Im (a) being the frequency shift with respect to  the 
two-dimensional equilibrium flow. We are mainly interested in phase-locked 
disturbances of the Klebanoff-type which travel synchronously with the two- 
dimensional base flow such that Im (n) = 0 and y = 0. 

Substituting (36) into (35) together with the spectral representation 

(‘2D,,’ ‘ZD,,) = (d$n/dy, -ina$n) 

of our equilibrium solution of $2 we obtain the modal equations 

where D,, = d2/dy2 - k i ,  with k:, = + (mp)2. Using the continuity equation 
and the definition of vorticity we obtain the following relations: 

u, = - 7 W n =  , (38a, b) 

k:, 1 k:, 1 

i(P?j’,, -nadv“,/dy} i{na?j’, +pdd,/dy} 

k:, 1 k2,. 1 

A i{nad?j’,/dy +Pd2 6,/dy2} A i{pd$,/dy - nad2 .F,/dy} 
6 n =  -i@, , Cn = +in&, . (38c, d) 

The convolution terms are then 

with A:: = 
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FIQURE 12. Growth rate Re (v) of phase-locked (-) and non-phase-locked (----) secondary 
instability modes as function of spanwise wavenumber p for the low-amplitude equilibrium 
solution at Re = 1000, a = 0.2 with K = 30 and (a )  N = 1, (b )  N = 2 and (c) N = 3. The point in the 
insert of figure (c) marks the position of the equilibrium solution on the two-dimensional neutral 
surface for N = 3. 
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For the numerical treatment the secondary instability eigenvalue problem (37) is 
truncated at - N  < n < N .  After applying the exponential mapping of$2, Chebyshev 
collocation is used to discretize the system of ordinary differential equations (37) as 
for the two-dimensional equilibrium problem of $ 2. The ensuing algebraic eigenvalue 
problem can then be solved by means of standard eigenvalue routines. 

3.2. Three-dimensional secondary instability results and modal degeneracy 
Similar to our truncation discussion in $2.4 we test the accuracy of the secondary 
instability results by varying the truncation N .  In  order to demonstrate the influence 
of the primary instability amplitude we perform this computation for a low- and a 
high-amplitude example. At the low amplitude, corresponding to the threshold 
amplitude of secondary instabilities, the shape assumption is clearly good enough 
and truncation a t  N = 2 appears to be sufficient. A t  the high amplitude N = 3 
truncation gives quantitatively adequate results for the most unstable mode. 
However, qualitative changes are still possible for the higher-order modes a t  high 
amplitudes. Nevertheless, truncation a t  N = 3 seems good enough to demonstrate 
a modal degeneracy at lower amplitudes with possibly far-reaching physical 
implications. 

To investigate the influence of Fourier truncation N on the secondary instability 
results we fix a t  first Re = 1000, a = 0.2 and retain K = 30 Chebyshev polynomials 
in (0,1] for all computations. Figure 12 shows the corresponding temporal growth 
rates of the secondary instability modes on the low-amplitude equilibrium branch as 
a function of spanwise wavenumber p for N = 1,2 and 3 (the position on the N = 3 
equilibrium surface is marked by the point in the insert of figure 12c). The solid 
curves represent phase-locked fundamental modes with Im (cr) = 0 while the dashed 
curves mark non-phase-locked modes which we shall disregard in this study. We note 
that there is almost no difference between the results fop N = 1 and N = 3 at this very 
low equilibrium amplitude. Yet the secondary amplification rates are already 
considerable, confirming the statement that  these three-dimensional disturbances 
are physically. more important than the superharmonic two-dimensional solutions 
found in $2. 

The situation changes drastically if we consider the high-amplitude equilibrium 
branch, cf. figure 13. We note that several amplified phase-locked modes exist. While 
the most unstable mode seems to be fairly accurate for N = 3 (only minor changes 
exist between the N = 2 and N = 3 results) there are still qualitative changes for the 
higher-order modes, indicating that more Fourier modes should be retained. Again 
the solid curves represent phase-locked modes while the dotted curves typify non- 
phase-locked modes (not included in figure 13 c) .  Nevertheless, whatever the 
accuracy of the N = 3 results of figure 13(c) is, it is apparent that some of the 
amplified higher-order modes are near coalescence. This immediately gives rise to the 
question whether such a modal coalescence could occur between the most-amplified 
and a higher-order mode. In our problem we have two more parameters that  we can 
vary, namely Re and a. Keeping Re = 1000 still fixed we vary a on the two- 
dimensional equilibrium surface between the low- and high-amplitude point a t  
a = 0.2. The resulting phase-locked modes for N =  3 are shown in figure 14 (the 
corresponding position on the two-dimensional equilibrium surface is marked in 
the inserts of figure 14). 

Starting with a = 0.24 on the low-amplitude branch (figure 14a) we note that for 
fixed p the various amplified phase-locked modes can be classified, as customary, in 
descending order of their rate of growth. Only in the damped region does there 
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FIGURE 13. Growth rate Re (n)  of phase-locked (-) and non-phase-locked (----) secondary 
instability modes as a function of spanwise wavenumber B for the high-amplitude equilibrium 
solution at Re = 1000, a = 0.2 (marked in the insert on c) with K = 30 and (a) N = 1, ( b )  N = 2 and 
( c )  N = 3. 
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FIGURE 14 (a, b ) .  For caption see facing page. 

already exist a link between the second and third mode. Around a = 0.24952 (figure 
14b) we observe a coalescence between the first and second modes near p z 3.17. 
What makes this degeneracy even more exciting is the fact that  i t  occurs in the 
amplified regime. All hitherto known degeneracies between primary instability 
modes, cf. for example Benney & Gustavsson (1981), Gustavsson (1986), Koch 
(1986), Jones (1988) or Shantini (1989), are in the damped regime. Increasing the 
two-dimensional equilibrium amplitude further we find the results shown in figure 
l4(c) for a = 0.25. (The usual first- and second-order phase-locked modes do not exist 
in a finite-p range where the third mode becomes the least damped phase-locked 
mode. In  this finite-fl range, where the first and second phasc-locked modes cease to  
exist, a complex-conjugate pair of non-phase-locked modes occurs along the dashed 
line shown in figure 14(c). This means that in the moving system a time-periodic 
solution appears, which corresponds to a two-frequency solution in the laboratory- 
fixed system. However, in our present study we exclude such quasi-periodic 
solutions). We have already encountered such behaviour in figure 14 of Ehrenstein 
& Koch (1991) where this was the reason for the rather unusual lobed form of the 
neutral secondary amplification curve. I n  Ehrenstein & Koch (1991) we used the 
approximate quasi-equilibrium approach of Orszag & Patera (1983) while here we 
employ the ‘exact ’ two-dimensional equilibrium solution without shape assumption 
which is ‘exact’ to within the parallel-flow approximation. If we increase the 
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FIGURE 14. Growth rate Re(@ of phase-locked secondary instability modes as a function of 
spanwise wavenumber /3 for Re = 1000, K = 30, N = 3, with (a) u = 0.24, ( b )  u = 0.24952, (c) 
a = 0.25 and ( d )  u = 0.221 61. The points in the inserts mark the corresponding positions of the 
equilibrium solution on the two-dimensional neutral surface for N = 3 and the solid triangles 
indicate a modal degeneracy. 

amplitude further we find another degeneracy of the first mode near a = 0.22161, 
/3 z 1.99 (cf. figure 14d) on the high-amplitude equilibrium surface before we reach 
the high-amplitude results of figure 13 (c). 

The modal degeneracy above described implies the coincidence of two amplified 
eigenvalues, i.e. the double eigenvalue has an algebraic multiplicity of two, cf. Iooss 
& Joseph ( 1980). The eigenvectors corresponding to  this double eigenvalue also 
coincide, i.e. the geometric multiplicity is one indicating a non-semisimple 1 : 1 
resonance. Generalized eigenvectors have to be introduced and the local amplification 
rate is texp(ut), i.e. algebraic. As a side remark we note that the geometric 
multiplicity of our bicritical bifurcation points for the plane Poiseuille flow problem 
in Ehrenstein & Koch (1991) was two and hence they were semisimple because the 
coinciding eigenvalues belonged to  linearly independent families of eigenmodes, i.e. 
symmetric-antisymmetric, or first and second spanwise harmonic. 

The qualitative implications of this algebraic growth are sketched in figure 15. 
While an exponentially amplified mode needs a certain time to reach a prescribed 
finite amplitude (depending on its rate of amplification) an algebraically amplified 
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FIQURE. 15. Schematic demonstrating the effect of direct resonance on the 
temporal amplitude evolution. 

mode starts off comparatively abrupt. This is already true for algebraically damped 
modes. If the damping is weak these modes can reach relatively high amplitudes, 
possibly initiating nonlinear effects. A neutral or amplified algebraic mode can not 
only sustain itself linearly but can also lead to explosive changes within a relatively 
short period of time, making direct resonances a plausible mechanism to occur during 
transition. 

To see how the amplification rate of the low-amplitude point of degeneracy, cf. 
figure 14(b), changes with Reynolds number we vary our last parameter Re. As 
depicted in figure 16 (a)  there is a fairly clear change from the resonance point being 
in the amplified region to the resonance point being damped as we decrease Re. The 
cross-over point is near Re, x 890 and corresponds to a double bifurcation point. 
Figure 17 depicts the growth rates of the phase-locked secondary instability modes 
for Re = 910, a = 0.23292 (with Re, = 887.7, Re, = 7.88 x lo6, E = 0.00675, 
C = 0.387, c; = 0.806 x lop3) which is reasonably close to this double-bifurcation- 
point condition. Comparing this with Dhawan’s (1953) local skin-friction measure- 
ments, reshown in figure 16 (b)  together with the projection of the resonance points on 
the two-dimensional equilibrium surface (marked by the solid triangles), we observe 
that the cross-over point lies in the vicinity of the measured increase in local skin 
friction during transition. Furthermore, Re, x 890 also lies very close to the sudden 
increase in wall shear as computed by Chang et al. (1991) for fundamental breakdown 
at the Mach number M = 1.6 using the parabolized stability equations. 

From the insert of figure 17 we see that the amplitude E of the two-dimensional 
disturbance at  this double bifurcation point is already substantial. The free-stream 
turbulence level in Dhawan’s (1953) experiment was u’/U = 0.03%. On the other 
side Schubauer & Skramstad (1948), see also Dhawan & Narasimha (1958), found 
transition a t  much higher Reynolds numbers, a consequence of different free-stream 
conditions. If direct resonances were to have anything to do with transition, the 
amplitude of the two-dimensional disturbance at  direct resonance must play a role. 
Keeping Re = 910 constant but following the link-up of the second and third mode, 
cf. figure 14 (a) ,  to lower values of a we found a direct resonance between these modes 
near a = 0.2182 as shown in figure 18. This direct resonance occurs in the damped 
regime, but if we increase the Reynolds number we find that this direct resonance can 
become amplified near Re x 1900 (Re, x 3 . 6 ~  lo6) as depicted in figure 19. 
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FIGURE 16(a) .  Growth rate Re(rr,) of the low-amplitude secondary instability mode at direct 
resonance as a function of Reynolds number Re, for K = 30 and A’= 3 :  A, amplified direct 
resonance point; V, damped direct resonance point. ( h )  The corresponding location of the direct 
resonance points on the projerted +Re, equilibrium surfare of figure 10. 

Remarkably, this direct resonance between the second and third mode occurs a t  
much lower amplitude E ,  cf. insert of figure 19, and at  a Reynolds number which lies 
in the vicinity of the eN-result with N = 9. All this might be coincidental. But aside 
from being of interest in itself, we believe it to be worthwhile to have a closer look 
at these direct resonances in order to verify or disprove thc hypothetical connection 
with transition. 

4. Conclusions 
Applying the parallel-flow assumption and using a Fourier expansion in the 

streamwise direction as well as Chebyshev collocation in the exponentially 
transformed wall-normal direction, we investigated secondary instabilities in a 
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FIGURE 17. Growth rate Re (g) of phase-locked secondary instability modes EM a function of 
spanwise wavenumber B for Re = 910, a = 0.23292 with K = 30 and N = 3. 

FIGURE 18. Growth rate Re (u) of phase-locked secondary instability modes as a function of 
spanwise wavenumber B for Re = 910, a = 0.2182 with K = 30 and N = 3. 

Blasius boundary layer a t  finite Reynolds numbers. A first step required the 
computation of the primary instability neutral surface of two-dimensional nonlinear 
TollmienSchlichting waves. Unlike plane Poiseuille flow, but in agreement with 
findings of Lifshits et al. (1989), two-dimensional superharmonic period-halving 
bifurcations were observed for truncations N 2 2. As noted by Lifshits et al. (1989) 
these two-dimensional superharmonic bifurcations occur a t  large amplitudes and 
therefore are physically less important than the three-dimensional low-amplitude 
secondary bifurcations, cf. Herbert ( 1988). 

Using the two-dimensional equilibrium solutions above described as base flow we 
investigated the stability of this primary equilibrium solution with respect to three- 
dimensional secondary disturbances in the second part of the paper. Only Klebanoff- 
type fundamental disturbances are considered which are phase locked to the motion 
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FIQURE 19. Growth rate Re (g) of phase-locked secondary instability modes as a function of 

spanwise wavenumber B for Re = 1900, a = 0.176 with K = 30 and N = 3. 

of the base flow. In addition to the well-known properties of secondary instabilities 
modal degeneracies were detected between amplified secondary instability modes. 
Frequently termed direct resonances these modal degeneracies indicate locally 
algebraic growth and constitute the main result of this study. Direct resonances 
occur a t  distinct points in the Reynolds number-wavenumber parameter space. 
Tracing these direct resonances to the point of zero amplification, the corresponding 
zero-amplification Reynolds number amazingly enough turns out to be in the 
vicinity of the experimentally observed transition in Blasius flow and one is tempted 
to link this rather explosive algebraic growth to the abrupt changes observed during 
transition. However, this agreement might be purely coincidental and before 
drawing far-reaching conclusions more penetrating studies are necessary to clarify 
this. In particular, higher modal truncations should be computed to check how much 
they affect the results quantitatively and the applicability of the parallel-flow 
assumption has to be assessed. While an experimental test is probably impossible 
owing to the instability of most of these intermediate equilibrium states, time- 
dependent numerical simulations might offer a viable alternative. In the mean time 
more general flows, like Falkner-Skan boundary layers or three-dimensional 
FalknerSkan-Cooke flows will be studied to see if this modal degeneracy persists 
and has the correct trend. 
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